

Loudspeaker Test

Report

Manufacturer: Next Two

Type: Ceiling

Model: MC5Tnew

For: MEDC Ltd

- Report No.: 1326/LS/MC5Tnew
- Prepared By: A. N. Stacey B.Sc., AMIOA

October 2002

© AMS Acoustics, London

1.00 Object

1.01 The object of this Report is to present measurements of the acoustic performance of the MC5Tnew device.

2.00 Scope

- 2.02 The following characteristics were measured
 - On-axis frequency response
 - Polar response
 - Impedance
 - Applied voltage
 - On-axis 3rd octave band sound pressure level

from which the following are calculated:

- (i) Directivity Index (dB), tabulated and graphical
- (ii) Directivity factor, Q
- (iii) Effective octave band impedance
- (iv) Octave band Sensitivity (dB @ 1m, 1W/oct)
- (v) Overall Sensitivity:
 dBA @ 1m, 1W
 dBlin @ 1m, 1W
 250Hz-4kHz @ 1m, 1W
 Speech shape @ 1m, 1W
- (vi) Acoustic Power (dB-PWL @ 1W), tabulated and graphical
- (vii) Octave band Power Apportionment (%)
- (viii) Impedance bode plot
- (ix) Expected maximum Sound pressure level (dB @ 1m)
- (x) Frequency response chart
- (xi) Polar response charts.

3.00 Method

- 3.01 The device was mounted in Free Space as shown in figure 1 Mounting Method A.
- 3.02 The measurements were made in an anechoic chamber.
- 3.03 Measurements were made as detailed in AMS Test Method document No. IR/1a/LS/Meth.
- 3.04 All measurements were made in general accordance with BS EN 60268: Part 5: 1997.

4.00 Results

- 4.01 The On-axis 3rd octave frequency response of the device is shown graphically in the appendix.
- 4.02 The Impedance bode plot of the device is shown graphically in the appendix.
- 4.03 Polar plots of the device are shown graphically in the appendix.
- 4.04 Tabulated values of Directivity index, Directivity factor, Sensitivity, Acoustic Power, Power Apportionment, Impedance and Maximum SPL are shown in the Summary data sheet given in the appendix.
- 4.05 The Directivity Index has been calculated using Gerzon' equal angle, weighted area method.

5.00 Notes

5.01 Sensitivity

The octave band sensitivity is produced in its useful form for calculations. It should be noted that the octave band sensitivity is given as dB @ 1m, 1W/Oct. To determine the output when only the overall power is known, then only the overall dBA or dBlin values should be used. For more detailed information, refer to AMS Acoustics Data Sheet 'Loudspeaker Sensitivity – Interpretation of Results'.

5.02 Polar Plots

For convenience, each polar plot has been normalized to 0dB. For this reason, caution is advised when comparison of levels between octave bands are made. The reference axis frequency response should be used for comparison purposes.

6.00 Engineers Notes & Observations

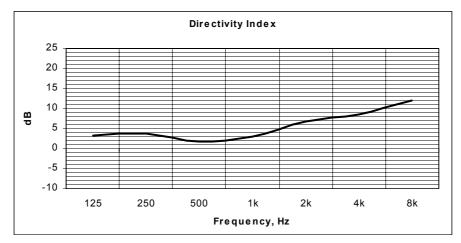
Reference point located concentric to driver and at grille.

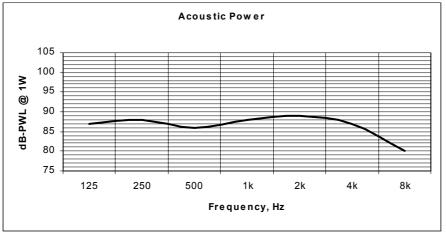
Reference axis located normal to grille and includes reference point.

Loudspeaker Information

Colour : Serial No. : Batch No. : Other Markings : Backbox :	MC5Tnew Ceiling White NAA073 None NM None As Supplied 1600 70 mm 188 mm
Driver Types/Sizes : Driver Serial No.(s) :	1 x cone driver NM
Driver Markings : Damping Material :	
Available Tappings :	
Electrical Details	
Resonant Frequency(s) : Cross-Over Frequency(s) :	See Impedance Plot N/A
Nominal Impedance (ohms):	8
	NM
Capacitance :	NM

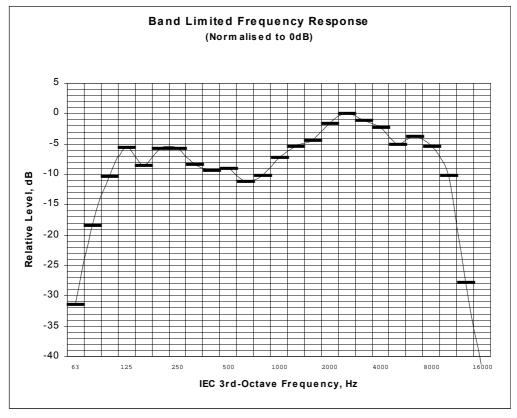
NM = Not Measured, NA = Not Applicable

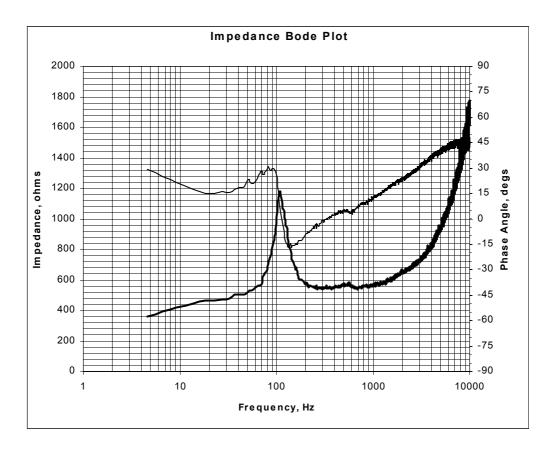


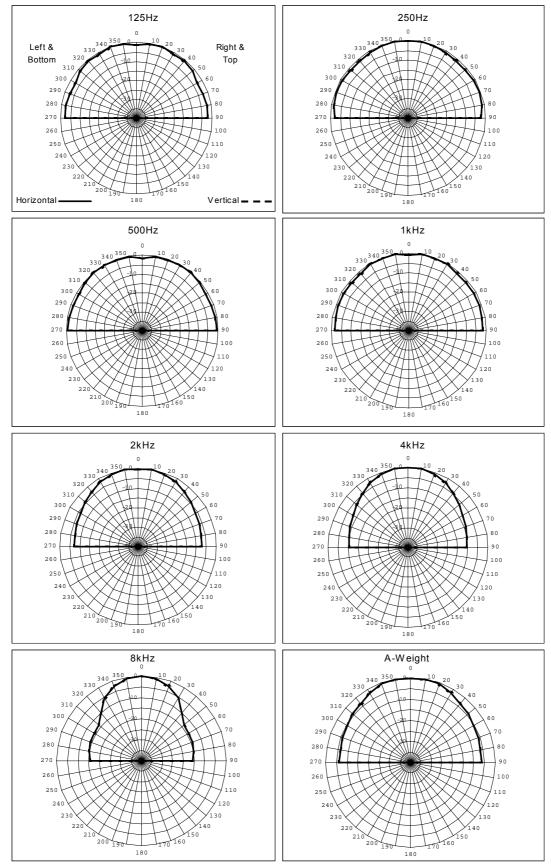

Manufacturer : Next Two Model Code : MC5Tnew Mounting : Half-Space, Free Field Transformer Tapping : 10W

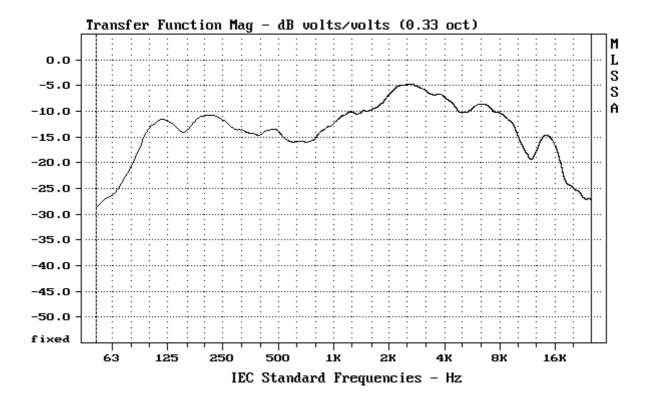
Reference Axis Located at : 0 degrees

Frequency (Hz)								
125	250	500	1k	2k	4k	8k	dB	dBA
2.1	2.4	1.5	2.0	4.8	7.2	15.5		
3.2	3.8	1.8	3.0	6.8	8.6	11.9		
89	88	85	87	93	93	92	90	90
							90	91
							88	84
87	88	86	88	89	87	80		
11	16	15	17	16	14	9		
794	557	555	554	592	673	937		
89	90	87	90	95	94	91	100	100
	2.1 3.2 89 87 11 794	2.1 2.4 3.2 3.8 89 88 87 88 11 16 794 557	125 250 500 2.1 2.4 1.5 3.2 3.8 1.8 89 88 85 87 88 86 11 16 15 794 557 555	125 250 500 1k 2.1 2.4 1.5 2.0 3.2 3.8 1.8 3.0 89 88 85 87 87 88 86 88 11 16 15 17 794 557 555 554	125 250 500 1k 2k 2.1 2.4 1.5 2.0 4.8 3.2 3.8 1.8 3.0 6.8 89 88 85 87 93 87 88 86 88 89 11 16 15 17 16 794 557 555 554 592	125 250 500 1k 2k 4k 2.1 2.4 1.5 2.0 4.8 7.2 3.2 3.8 1.8 3.0 6.8 8.6 89 88 85 87 93 93 87 88 86 88 89 87 11 16 15 17 16 14 794 557 555 554 592 673	125 250 500 1k 2k 4k 8k 2.1 2.4 1.5 2.0 4.8 7.2 15.5 3.2 3.8 1.8 3.0 6.8 8.6 11.9 89 88 85 87 93 93 92 87 88 86 88 89 87 80 11 16 15 17 16 14 9 794 557 555 554 592 673 937	125 250 500 1k 2k 4k 8k dB 2.1 2.4 1.5 2.0 4.8 7.2 15.5 3.2 3.8 1.8 3.0 6.8 8.6 11.9 90 89 88 85 87 93 93 92 90 88 86 88 89 87 80 11 16 15 17 16 14 9 794 557 555 554 592 673 937

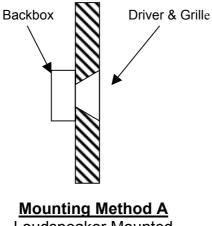

Test Signal: Pink Noise(100Hz-10kHz)

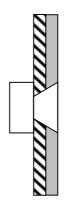


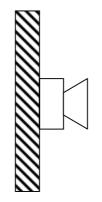

MC5Tnew

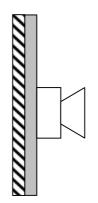

MC5Tnew

MC5Tnew


Wide Band Frequency Response (Valid from 63Hz to 20kHz)


Note: The wide band frequency response is derived using MLS methods and does not necessarily relate to the sensitivity values given in the summary table.


Loudspeaker Mounting Methods


Loudspeaker Mounted in a Reflective Baffle

Mounting Method B Loudspeaker Mounted in an Absorbent Baffle

Mounting Method C Loudspeaker Mounted on a Reflective Baffle

Mounting Method B Loudspeaker Mounted on an Absorbent Baffle

<u>Mounting Method E</u> Loudspeaker not Attached to any Surface and Radiation Unaffected by nearby Reflecting Surfaces